Answer:
Option A
Explanation:
We have differential equation
dθdt=−k(θ−θ0) , where k is constant
⇒ dθdt+kθ=kθ0
which is linear differential equation in the form of
⇒ dydx+Py=Q
∴ IF= e^{\int kdt }=e^{kt}
therefore required solution,
(\theta)(e^{kt})=\int(e^{kt}\times k \theta_{0})dt
\Rightarrow \theta e^{kt}=e^{kt}\theta_{0}+a
\Rightarrow \theta =\theta_{0}+ae^{-kt}