<<12345>>
11.

 The solution  of the differential equation  $\frac{d\theta}{dt}=-k(\theta-\theta_{0})$ where k is constant , is ...................

$\theta=\theta_{0}+ae^{kt}$


A) $\theta=\theta_{0}+ae^{-kt}$

B) $\theta=\theta_{0}+ae^{kt}$

C) $\theta=2\theta_{0}-ae^{kt}$

D) $\theta=2\theta_{0}-ae^{-kt}$



12.

$\int\frac{x^{2}+1}{x^{4}-x^{2}+1}dx=$.......


A) $\tan^{-1}\left(\frac{x^{2}+1}{2}\right)+c$

B) $\tan^{-1}(x^{2})+c$

C) $\tan^{-1}\left(\frac{x^{2}-1}{2}\right)+c$

D) $\tan^{-1}(2x^{2}-1)+c$



13.

 Using differentiation , approximate value of  f(x)= x2-2x+1  at x=2.99 is


A) 3.96

B) 9.96

C) 4.98

D) 5.98



14.

 The vectors  $x\hat{i}-3\hat{j}+7\hat{k} $ and   $ \hat{i}+y\hat{j}-z\hat{k}$ are collinear then the value of

  $\frac{xy^{2}}{z}$ is equal 


A) $\frac{9}{7}$

B) $\frac{-9}{7}$

C) $\frac{-7}{9}$

D) $\frac{7}{9}$



15.

 The negation of '" $\forall,n\in N, n+7>6$ "  is ................


A) $\exists n\in N, $such that $n+7 \leq6$

B) $\exists n\in N,$ such that $n+7 \geq6$

C) $\forall n\in N, n+7 \leq 6$

D) $\exists n\in N, $such that $n+7 < 6$



<<12345>>